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Finite Element Formulation of Poro-Elasticity 
Suitable for Large Deformation Dynamic 
Analysis 

Ronaldo I. Borja and Chao Li 

We use theory of mixtures to model the saturated soil as a two-phase medium 
composed of solid grains and fluids. By applying the conservation laws of 
momentum and mass we obtain the governing coupled equations. By ignoring the 
relative acceleration of the fluid phase to that of the solid phase we obtain the 
simplified u-p formulation. We perform the time integration using the Newmark 
method. To incorporate the finite deformation effects in the context of the u-p 
formulation we consider a compressible Neo-Hookean hyperelastic model 
describing the constitutive behavior of the porous matrix.  We adopt a Lagrangian 
point of view by integrating the balance equations over the reference 
configuration domain; however, we represent the constitutive model for fluid flow 
by a generalized Darcy’s law formulated with respect to the current configuration. 
Fluid compressibility is considered in the finite deformation model based on 
logarithmic volumetric strain.  A numerical example is presented to show the 
performance of the finite element model. 

 

INTRODUCTION  
 Porous materials are defined as materials with an internal structure. They comprise a solid 
phase and closed and open pores. The solid phase is usually referred to as matrix or skeleton. 
The pores may be filled with one or more kinds of fluids or gas. Soil, rock, concrete are some 
of the most commonplace porous media. The mechanics of porous media is of utmost interest 
in many disciplines such as geotechnical engineering, earthquake engineering, geophysics, 
petroleum engineering, biomechanics, physical chemistry, agricultural engineering, and 
materials science. 
 The motivation behind this research is the formulation of a mathematical model 
characterizing the behavior of fully saturated soil media during dynamic excitation. The 
challenge lies in the transient behavior of this material as the soil matrix deforms. Such solid 
deformation is generally accompanied by transient flow of fluids through and across the open 
pore spaces. Furthermore, large deformation of the soil matrix gives rise to second-order 
geometric effects not accounted for by the linear theory. Finally, the presence of inertia loads 
in both the solid and fluid phases makes the solution of the coupled phenomena 
computationally demanding. To the knowledge of the authors there is currently no systematic 
way of treating geometric nonlinearity in the context of dynamic analysis of fully saturated 
soil media. 
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    This research presents a mathematical framework for characterizing the response of fully 
saturated soil media subjected to dynamic excitation. The formulation accounts for transient 
fluid diffusion and finite deformation effects. A nonlinear Neo-Hookean hyperelastic 
constitutive model is implemented. However, the formulation is intended to serve as a 
foundation for more advanced computational modeling platforms that may also account for 
plasticity. Besides, the research methodology and results are general and are applicable to 
other porous media. By using different material subroutines, the method can be used for 
geotechnical earthquake engineering applications, to study the behavior of tissues in human 
body, and to investigate the mechanical properties of the human cornea, among others. 
 

METHODOLOGY  
 Two sources of nonlinearity exist in the analysis of porous continua, namely, material 
nonlinearity and geometric nonlinearity. The strong material nonlinearity exhibited by most 
soil under earthquake loading conditions is well known. A variety of numerical models have 
been proposed in the last twenty years to capture the relationship of the ground motion 
response with the input bedrock earthquake excitation, considering nonlinear soil behavior. 
Finite deformation is another important source of nonlinearity which has not received much 
attention. Geometric nonlinearity is important in the area of stability analysis, liquefaction 
analysis, and any situation where the strain level is high.  

    To address this problem, wave propagation and diffusion effects are coupled through a 
two-phase theory of mixtures. The governing equations describing the coupling effects of the 
solid phase and the fluid phase are based on a u-p formulation, where u is the solid 
displacement, p is the pore water pressure. The governing equations are derived from balance 
of mass and balance of momentum for the overall mixture and for each phase, respectively. 
These field equations are used to develop the variational forms for the finite element (FE) 
implementation. A general nonlinear FE framework is then written. The code is used to 
simulate the dynamic response of saturated soils; however, it can also be applied to more 
general dynamic FE problems. A hyperelastic soil constitutive model is implemented for 
finite strain problems. Other materials such as those encountered in biomechanics, or 
elastoplastic soil constitutive models can also be readily used within this FE framework. In 
this FE program, a Q9P4 (quadrilateral in displacement and bilinear in pore pressure) element 
is implemented to simulate plane strain problems in both the small deformation and the finite 
deformation regimes. 

 

BRIEF BACKGROUND LITERATURE 
 Theory of porous media has been of great interest to researchers for a considerable 

time. Biot (1941;1956;1962) generalized Terzaghi's theory of consolidation and developed a 
two-phase coupled fluid-solid mixture theory for the quasi-static and dynamics analyses. 
Since then, the governing equations for porous materials have been formulated by many 
researchers within the framework of linear elasticity. Modern mixture theories were 
developed by Bowen (1980;1982). Extensions of Biot's theory into the nonlinear range were 
formulated by Prevost (1980;1982) and others. de Boer (1996) provided a detailed historical 
review of the development of theory of porous media. 

Borja and Alarcón (1985) and Borja et al. (1998) proposed a mathematical framework for 
finite strain consolidation, where the motion of the solid phase alone was followed. The 
generalized Darcy's law describes the relative motion of the fluid phase with respect to the 
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solid phase. However their analysis is limited to quasi-static problems, and they assumed that 
both soil particles and fluids are incompressible. Armero (1999) formulated a multiplicative 
elastoplastic model in the quasi-static range. Larsson and Larsson (2002) presented a 
thermodynamic formulation. However, their formulation is still limited to quasi-static 
analysis.  This review is by no means complete, and at the time of writing of this paper, more 
works are still coming out in the literature.  The pertinent details of the model formulation 
and implementation presented in this paper are described in great length in an upcoming 
paper by Li, Borja and Regueiro (2004) entitled “Dynamics of porous media at finite strain.” 
 

BALANCE LAWS 

 Let φt : B → Rnsd  be the motion, or set of configurations of a fluid saturated simple 
porous boundary B ⊂ Rnsd and let U  be an arbitrary open set with piecewise C1 boundary 
condition, such that U ⊂ B. For each material point X  in B , we associate Lagrangian 
displacement, velocity and acceleration fields u(X, t), v(X, t), and a(X, t), where t  is time, 
such that 
 

  u(X, t) = x − X;        v(X, t) =
∂φ(X, t)

∂t
;        a(X,t) =

∂2φ(X, t)
∂t2 ,            (1) 

 
where x = φ(X, t), and X  are the positions of the material point X  in the current and 
reference configurations, respectively. At any spatial point x  now occupied by X , we also 
associate fluid particles that completely fill up the voids of X , with Eulerian velocity in the 
presence of diffusion given by  
 
  vf = vf (x,t) ≠ v(X, t).                  (2) 
 
If vf = v , then the fluid and solid move together as one body, leading to a locally undrained 
motion. In the following derivation, we use φt (U )  to represent the deformed body, B  to 
represent the soil body in its original configuration, and ∂φt (U ) and ∂B  to represent the 
boundaries of the body in the deformed and original configurations, respectively. 

BALANCE OF MASS 
 Let ρs  be the intrinsic mass density of the solid grains, ρf  the intrinsic mass density of 
the fluid phase, and ϕ  the porosity of the soil.  Balance of mass for the solid phase reads 
 

  −
dϕ
dt

+
1−ϕ
Ks

dps
dt

+ (1−ϕ ) div v = 0,                (3) 

 
where Ks  is the intrinsic bulk modulus of the solid grains, ps is the intrinsic pressure in the 
solid grains, and d(⋅) /dt  a material time derivative operator following the motion of the solid 
phase.  Balance of mass for the fluid phase writes 
 

  dϕ
dt

+
ϕ
Kf

dpf
dt

+ϕ div v = −
1
ρf

div q ,                (4) 
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where Kf  is the intrinsic bulk modulus of the fluid phase, pf  is the intrinsic pressure in the 
fluid phase, and q  is the Eulerian relative flow vector, given explicitly by 
 
  q = ϕρf (vf − v) .                  (5) 
 
Note that the material time derivative is taken following the motion of the solid phase in both 
the solid and mass balance equations.  Balance of mass for the solid-fluid mixture takes the 
form 
 

  1−ϕ
Ks

dps
dt

+
ϕ
Kf

dpf
dt

+ div v = −
1
ρf

div q ,               (6) 

BALANCE OF LINEAR MOMENTUM 

    We denote by σ s  and σ f  the Cauchy partial stress tensors arising from the solid and fluid 
phase stresses, respectively. The Cauchy total stress tensor is obtained from the sum 
 
  σ = σ s +σ s .                     (7) 
 
For the solid phase the linear momentum balance equation in the absence of momentum 
supplies due to chemical reactions with the fluid takes the form 
 
  ρs(1−ϕ)g + hs + div σ s = ρs (1−ϕ )a ,                (8)                               
 
where g  is the vector of gravity acceleration, and hs is the flow-induced body force arising 
from the frictional drag of the fluid phase on the solid matrix. Similarly, for the fluid phase 
the linear momentum balance equation can be written as follows,  
 
  ρfϕ g + hf + div σ f = ρfϕ af ,                 (9) 
 
where hf  is the reactive body force exerted by the solid matrix on the fluid phase. Note that 
since hs and hf  are internal forces that naturally will not affect the mixture as a whole, so 
hs + hs = 0 . In the u-p formulation, we assume the material acceleration of the fluid phase 
relative to that of the solid phase is negligible, i.e., af ≈ a . Adding equations (8) and (9) 
gives 
 
  ρ g + hf + div σ = ρ a ,                (10) 
 
where ρ = ρs(1−ϕ)+ ρfϕ  represents the total saturated mass density of the mixture. 
 

CONSTITUTIVE EQUATIONS 
 Instead of expressing the total Cauchy stress tensor in terms of partial stresses, we write it 
as the sum of effective stresses and pore pressures, i.e., 
 
  σ = ′ σ − pf1 ,                  (11) 
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where 1  is the second-order identity tensor.  The negative sign follows from continuum 
mechanics convention of a positive sign for tensile normal stresses.  Equivalently, we write 
the effective stress equation in terms of the symmetric second Piola-Kirchhoff stress tensors, 
 
  S = ′ S − pfC

−1,                (12) 
 
where C  is the right Cauchy-Green deformation tensor. 
 
 Next we decompose the effective stress tensor ′ S  into inviscid and viscous parts, 
 
  ′ S = ′ S inv + ′ S vis .                (13) 
 
For the inviscid part we consider a compressible neo-Hookean hyperelastic material based on 
a stored energy function proposed by Bonet and Wood (1997), 
 

  Ψ(X,t) =
µ
2

(tr C − 3) − µ ln J +
λ
2

(ln J )2 ,             (14) 

 
where λ  and µ  are the Lamé constants, and J  is the Jacobian of the solid motion.  This 
stored energy function yields the following form of the inviscid stress, 
 
  ′ S inv = µ1+ (λ ln J − µ)C−1.               (15) 
 
For the viscous part we consider a Kelvin solid and postulate stress of the form 
 

  
  

′ S vis =
α
2

C : ÝC ,                 (16) 

 
where α  is a parameter reflecting the viscous damping characteristics of the solid matrix, and 
 

  
  
C = 4 ∂2Ψ

∂ C ⊗ ∂ C
                (17) 

 
is the second tangential elasticity tensor. 
 
 For fluid flow in the dynamic regime the constitutive equation relates the internal body 
force vector hf  to the Eulerian relative flow vector q , where 
 
  hf = ϕgk−1 ⋅ q ,                 (18) 
 
where g is the gravity acceleration constant and k  is the permeability tensor (assumed 
symmetric and positive-definite).  Imposing balance of momentum for the fluid phase thus 
gives the generalized Darcy’s law in the dynamic regime, given by 
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  q = ρfk ⋅[ 1
ϕρfg

grad(ϕpf
J

)+
a − g

g
].              (19) 

 

Implied in the above equation is the assumption af ≈ a , allowing the problem to be 
formulated in u-p form. 

COMPUTATIONAL ASPECTS 

The u-p formulation requires u and p to be defined from sets of trial functions that are H1 in 
the sense that they have square-integrable first derivatives, and that they satisfy essential 
boundary conditions. The formulation also requires that weighting functions are also H1 and 
vanish on the Dirichlet boundaries. The finite element formulation for the problem at hand is 
described by Li, Borja and Regueiro (2004).  Following the standard finite element 
formulation, element shape functions are introduced to interpolate the solid phase 
displacement and pore pressure fields. Here, in order to avoid element locking in the nearly 
incompressible range, we require the shape functions for the pore pressure field to be one 
order lower than the shape functions used for the displacement field.  The matrix equations 
are then time-integrated via Newmark method, and solved iteratively using Newton’s 
method. 
 

NUMERICAL EXAMPLE 
We consider a saturated porous foundation supporting a vertically vibrating strip footing. The 
footing load (in MPa) is given by the harmonic function w(t) = 3− 3cosωt , where ω =100 
rad/s is the circular frequency.  The footing is 2m wide, and the porous foundation block is 
20m wide and 10m deep.  Figure 1 shows the finite element mesh; the left vertical boundary 
is the plane of symmetry, and hence only the right half of the region is modeled. The 
boundary conditions on the middle line of the block are applied via horizontal rollers. The 
upper boundary is free.  The left, right and bottom boundaries are supported, and no drainage 
is allowed.  The material parameters are taken as: Lamé constants (in MPa) λ = 8.4  and 
µ = 5.6; initial porosity is ϕ0 = 0.33; reference intrinsic mass densities (in kg/cu.cm.) 
ρs0 = 2500 and ρf0 =1000 ; fluid bulk stiffness Kf = 2.2 ×104  MPa; hydraulic conductivity 
k = κ1  cm/s (isotropic), where κ  varies from 0.0001 m/s to 0.1 m/s; and solid matrix 
damping coefficient α = 0.02  s. The time step is taken as ∆t = 0.01 s. 

 Figure 2 shows the vertical displacements of node D, located directly below the center of 
the footing, corresponding to κ = 0.0001 m/s as predicted by the small and finite deformation 
analyses, respectively. We see that the small deformation solution overestimates settlement, a 
typical result considering the nature of the formulation.  Figure 3 shows the pore pressure at 
node E and demonstrates a reverse trend, i.e., the small deformation underestimates pore 
pressure.  Hence, for a given imposed displacement, the error of the small deformation 
solution has a compounding effect in terms of pore pressure prediction. 
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Figure 1. Strip footing under harmonic loading. Uniform pressure w(t) is a harmonic load; vertical 
sides and bottom boundary are impervious and on roller supports, upper side is a drainage boundary 
and free (Figure reprinted from Li, Borja and Regueiro, 2004). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Strip footing under harmonic loading: vertical displacement-time histories of node D at κ = 
0.001 m/s (Figure reprinted from Li, Borja and Regueiro, 2004). 
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Figure 3. Strip footing under harmonic loading: pore pressure-time histories of node E at κ = 0.001 
m/s (Figure reprinted from Li, Borja and Regueiro, 2004). 

 

 

SUMMARY AND CONCLUSIONS 
A numerical model for nonlinear transient response analyses of fully saturated soil is 
developed in the framework of u-p finite element formulation for finite deformation analyses. 
The model is implemented into a finite element code. Using theory of mixtures the wave 
propagation and diffusion phenomena are coupled. The soil is modeled as two-phase 
continua with interaction between the solid phase and the fluid phase. The governing 
equations of the coupled soil-fluid mixture are composed of balance of mass and balance of 
linear momentum. A hyperelastic constitutive model is used for the finite deformation 
analyses. 
 A finite deformation formulation is necessary to accurately predict the transient response 
of saturated porous media at large strains. Geometrically linear models are not suitable for 
this purpose since they do not account for the evolving configuration and finite rotation that 
could have first-order effects on the predicted responses. A specific application example 
where the proposed finite deformation formulation has been noted to be most useful is the 
prediction of the liquefaction susceptibility of saturated granular soils, since by neglecting the 
geometric nonlinearity the liquefaction potential of these materials could be severely 
underestimated. Other application areas abound in the fields of biomechanics and materials 
science, among many others, where the underlying physics of porous materials is described 
by multiphase mechanics. 
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